

ECONOMIC EFFICIENCY AND THE ENVIRONMENT

LESSON OBJECTIVES

01

02

03

Define and compare gross and net benefits

Identify socially optimal environmental quality

Compare static vs. dynamic efficiency

QUESTION OF THE DAY

If hybrid cars use less gas and thus cost less to drive, why doesn't everyone drive a hybrid?

01

DEFINE GROSS AND NET BENEFITS

HOW DO PEOPLE MAKE DECISIONS?

You and a friend go to see Atlanta United play and you are trying to decide where to sit...

YOUR FRIEND ASKS HOW MUCH YOU WOULD BE WILLING TO PAY FOR A TICKET.

Seat location	Willingness to pay (WTP)		
300 level	\$50		
200 level	\$90		
100 level	\$120		
Club	\$150		

YOU VALUE THE CLUB LEVEL THE MOST, SO SHOULD YOU GET IT?

Seat location	WTP	Price
300 level	\$50	\$30
200 level	\$90	\$60
100 level	\$120	\$100
Club	\$150	\$250

WHAT TICKET SHOULD YOU GET?

Seat location	WTP	Price	Net Benefit
300 level	\$50	\$30	(\$50-30 =) \$20
200 level	\$90	\$60	\$30
100 level	\$120	\$100	\$20
Club	\$150	\$250	\$-100

Optimal ticket is determined by **net benefit**, not gross benefit.

PROBLEM

WHAT ABOUT POLLUTION?

POLLUTION DAMAGES

There are many air pollutants with known environmental and health impacts.

The US Clean Air Act (CAA) covers six:

- \circ Ground-level ozone (O₃)
- \circ Particulate Matter (PM₁₀, PM_{2.5}, PM₁)
- Carbon Monoxide (CO)
- Lead (Pb)
- Sulfur Dioxide (SO₂)
- Nitrogen Dioxide (NO₂)

CONSIDER PARTICULATE MATTER...

- Mix of microscopic dust and liquid
- Can come from varied sources, such as construction or smokestacks
- Can form in the atmosphere

PM CAN HAVE SERIOUS HEALTH AND ENVIRONMENTAL EFFECTS

HOW PARTICULATE MATTER ENTERS THE BODY

 Particulate matter enters the body through the nose and mouth when we breathe.

3. PM2.5 can penetrate deep into the lungs, having serious health consequences for the lungs and heart.

2. The body eliminates most of the larger particles we inhale. Smaller particles like PM2.5 continue to the lungs.

Health Effects

- Cardiovascular
- Respiratory

Environmental Effects

- Air Pollution (Haze)
- Damage soil and water quality

WHAT ARE THE SOCIAL COSTS OF PM?

WHAT ARE THE SOCIAL BENEFITS OF AVOIDED PM?

PM POLLUTION CLEARLY HAS NEGATIVE EFFECTS

So, should we try to reduce PM pollution to 0?

What else do we need to consider?

ABATEMENT IS NOT FREE!

POSSIBLE COSTS

Opportunity cost of reducing output

Increased cost of cleaner production process

Cost of cleaning technology

SHANGHAI

1987

2013

https://www.theatlantic.com/photo/2013/08/26-years-of-growth-

shanghai-then-and-now/100569/

COSTS OF ABATEMENT

02

IDENTIFY SOCIALLY OPTIMAL ENVIRONMENTAL QUALITY

ECONOMIC EFFICIENCY

WHAT IS ECONOMIC EFFICIENCY?

Allocate scarce resources in a way that maximizes net benefit.

Notice, efficient level of abatement is not 100%

ECONOMIC EFFICIENCY

Economic Efficiency

#

Engineering Efficiency

ATTENDANCE ACTIVITY

Which Honda CRV should you buy?

CVT Standard: \$25,000, 30 MPG

Hybrid: \$28,000, 38 MPG

Price of gas: \$2.00

Expected Mileage: 80,000 miles

No extra WTP from warm glow (benefits are identical)

ATTENDANCE ACTIVITY

Which Honda CRV should you buy?

Model	Price (\$)	Gas Mileage (MPG)	Gas Price (\$/G)	Expected Mileage (Miles)	Total Gas Cost (\$)	Total Cost (\$)
CVT Standard	25,000	30	2	80,000	80,000/30*2 = 5,333	25,000 + 5,333 = 30,333
Hybrid	28,000	38	2	80,000	80,000/38*2 = 4,211	28,000 + 4,211 = 32,211

HOW DO ECONOMISTS IDENTIFY "OPTIMAL DECISIONS"

EFFICIENCY MAXIMIZES TOTAL NET BENEFIT

PROBLEM?

HOW DO ECONOMISTS FIND THIS?

HOW DO YOU CHOOSE WHAT TO GET FROM ALL THE DELICIOUS FOOD?

DO YOU CALCULATE
TOTAL NET
BENEFIT OF ALL
THE OPTIONS AND
THEN PICK THE
LARGEST?

OR

DO YOU EAT A LITTLE OF EVERYTHING...THINK... GET SECONDS OF SOME STUFF...THINK...GET THIRDS

THINKING AT THE MARGIN

1st Serving

This is delicious...

2nd Serving

• This is good...

3rd Serving

。I'm full...

4th Serving

I should've stopped at 3...

Keep eating more until the marginal benefit (enjoyment) equals the marginal cost (feeling stuffed)

Equimarginal
principle states total
net benefit is
maximized where
MB=MC

EQUIMARGINAL CONDITION FOR EFFICIENCY

Marginal benefit (Demand curve)

 Maximum willingness to pay for an addition unit

Marginal cost (Supply curve)

 Minimum willingness to accept for an additional unit

ECONOMISTS, LIKE REAL PEOPLE, THINK AT THE MARGIN

APPLIED TO CLIMATE CHANGE...

APPLIED TO CLIMATE CHANGE...

03

COMPARE STATIC VS. DYNAMIC EFFICIENCY

WHAT IF DECISIONS ARE DYNAMIC?

BENEFITS AND
COSTS OF EATING
MASHED POTATOES
ARE EXPERIENCED
INSTANTANEOUSLY

STREAM OF BENEFITS
AND COSTS FOR
ENVIRONMENTAL
PROBLEMS OFTEN
OCCUR AT DIFFERENT
POINTS IN TIME

DYNAMIC PROBLEM:

What if I asked you for \$1000 and told you I'd give you back \$1001 right away?

What if I asked you for \$1000 and told you I'd give you back \$1001 in 1 year (I'll even adjust for inflation)?

What about \$1002? \$1003?...

DISCOUNT RATE

YOU HAVE SOME CONSUMPTION RATE OF INTEREST OR DISCOUNT RATE

$$r=1-FV/PV$$

r - your discount rate

FV - future value

PV - present value

- Prefer instant gratification
- Expect to be richer in the future
- Could invest money today and earn a rate of return

Together, these describe the *time value of money*

Why is r > 0?

HOW DO WE DEFINE ECONOMIC EFFICIENCY IN A DYNAMIC SETTING?

Costs of abatement

Benefits of avoided climate damages

How can we compare the marginal costs to the marginal benefits?

We can use the discount rate, r, to calculate present values

$$FV=PV(1+r)^t$$

$$PV = \frac{FV}{(1+r)^t}$$

DYNAMIC EFFICIENCY RULE

In a dynamic setting, we apply the dynamic efficiency rule.

Maximize net present value (NPV):

NPV =
$$\sum_{t=0}^{T} \frac{B_t}{(1+r)^t} - \sum_{t=0}^{T} \frac{C_t}{(1+r)^t} = \sum_{t=0}^{T} \frac{B_t - C_t}{(1+r)^t}$$

DYNAMIC EFFICIENCY RULE

Maximizing NPV is the same as finding the point where the PV of marginal benefit equals the PV of marginal cost

ATTENDANCE ACTIVITY

Which Honda CRV should you buy?

CVT Standard: \$25,000, 30 MPG

Hybrid: \$28,000, 38 MPG

Price of gas: \$2.00 (constant over time)

Expected Mileage: 80,000 miles evenly over 8

years

Discount rate of 5%

Assume in real dollars No extra WTP from warm glow

ATTENDANCE ACTIVITY

Which Honda CRV should you buy?

MODEL	PRICE (\$)	GAS Mileage (MPG)	GAS Price (\$/g)	EXPECTED MILEAGE (MILES)	TOTAL GAS COST (\$)	TOTAL COST (\$)
CVT Standard	25,000	30	2	80,000	$\sum_{t=0}^{7} \frac{\left(\frac{10,000}{30} * 2\right)}{(1+0.05)^{t}} = 4,524$	25,000 + 4,524 = 29,524
Hybrid	28,000	38	2	80,000	$\sum_{t=0}^{7} \frac{\left(\frac{10,000}{38} * 2\right)}{(1+0.05)^{t}} = 3,572$	28,000 + 3,572 = 31,572

QUESTION OF THE DAY

If hybrid cars use less gas and thus cost less to drive, why doesn't everyone drive a hybrid?

PROBLEM

What discount rate should we use?

Higher discount rate -> less weight on the future

SOLUTION?

DISCOUNT RATES?

Choice of discount rate can have a large impact, especially for problems with a long time horizon (eg. Climate change)

Present value of \$1,000								
		T years from now						
Discount rate	T = 10	<i>T</i> = 50	T = 100	<i>T</i> = 200				
1%	\$905	\$608	\$370	\$137				
2%	\$820	\$372	\$138	\$19				
3%	\$744	\$228	\$52	\$2.7				
5%	\$614	\$87	\$7.6	\$0.06				
7%	\$508	\$34	\$1.2	\$0.001				
10%	\$386	\$8.5	\$0.07	\$0.00001				

ONE SCHOOL OF THOUGHT SUGGESTS WE USE MARKET RATE OF RETURN...

If returns to a project or policy are less than other investments, can do better by choosing alternative and let future generation choose what to do with the returns

Should be determined based on judgements around rate of time preference and inter-generational equity

ANOTHER SCHOOL OF THOUGHT SUGGESTS THE DECISION IS NORMATIVE...

TYPICALLY, WE APPLY MULTIPLE DISCOUNT RATES AND COMPARE OUTCOMES ACROSS THEM.

LESSON OBJECTIVES

01

02

03

Define and compare gross and net benefits

Identify socially optimal environmental quality

Compare static vs. dynamic efficiency

